共找到34条信息
荧光探针新突破!储军课题组开发出新型高性能基因编码的cAMP荧光探针

该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步理解cAMP信号的调控和功能奠定了基础。与广泛使用的钙离子探针GCaMP相比,G-Flamp1才仅仅只是开始:目前已有几十家国内外实验室在使用G-Flamp1,未来将会有更多实验室利用G-Flamp1来研究复杂的生物学问题。

PCR技术超全解析,轻松弄懂这份研究热点

PCR原理傻傻弄不清楚?PCR实验步骤看似简单却总是做不好?不知道不同实验目的该选哪种PCR?直播第六期为大家讲解PCR技术,从技术原理、步骤详解、类型介绍到应用领域,让你一场直播课吃透PCR。

这些激光知识你知道吗?

今天跟大家唠唠现实生活中的激光技术吧~激光被称为20世纪的四大发明之一!在激光技术应用领域,激光医学是最受重视的领域之一。对于激光治疗,想必大家并不陌生,比如矫正视力的激光准分子治疗,激光美容的面部祛斑祛痘等等。在欧美发达国家,激光治疗在兽医临床的应用成了自然的延伸,在兽医领域得到了广泛的应用。

速览激光散斑血流成像系统11个热门应用场景,不断拓展微循环研究

瑞沃德激光散斑血流成像系统是一款实时监测活体器官组织微循环血流灌注量的成像设备。内置多种算法,通过高空间分辨率、高帧率、低延迟的采集, 以图片、数据、视频等多维度的采集结果,接下来解读该设备在微循环领域11个应用场景的具体情况。

激光散斑如何优化大小鼠全脑缺血再灌注模型

大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)模型的制作已经成熟,但对活体成功模型的评判标准尚欠客观,目前国内对活体大鼠模型成功与否的评价仍无明确客观的标准,多以大鼠麻醉清醒后出现插栓对侧前肢不能前伸、运动旋转追尾等表现评价,具有一定的主观性。能否利用客观可行的方法提高对模型成功与否评价的客观性?

SAH后的血流灌注量变化与脑淋巴循环

蛛网膜下腔出血以后,脑脊液里的红细胞erythrocytes是被脑膜淋巴排出的,并以此缓解了神经炎症反应。脑膜淋巴管对于蛛网膜下腔出血后的神经功能会起到保护性的作用。对于脑内淋巴循环相关的研究正在日趋增长,这个过去被认为是不存在的结构随着越来越多的研究,正显现出更大的价值。

Caᵥ1.2合作门控如何被调节?UC Davis学者揭示糖尿病血管反应性变化新机制

L型CaV1.2通道在细胞兴奋、增殖、基因表达和肌肉收缩中起关键作用。CaV1.2通道的一个基本特性是它们内在的功能耦合能力,例如“合作门控”(cooperative gating)。CaV1.2的这种协同作用导致Ca2+内流放大,这种门控模式能够调节癌细胞、心肌细胞、神经元和动脉肌细胞的功能。在动脉肌细胞中,大约50%的Ca2+内流依赖于CaV1.2的合作门控,这对于动脉功能至关重要,因为Ca2+通过CaV1.2流入,将膜电位的变化与动脉肌细胞收缩耦合,从而影响动脉的直径、血流量和血压。

瑞沃德-激光散斑血流成像系统

RFLSI Ⅲ激光散斑血流成像系统基于LSCI(laser speckle contrast imaging)技术设计,具有非侵入性、高帧率、高分辨率的优势,用于实时监测和记录暴露组织器官的血流灌注情况。精准量化微循环血流量,满足广泛的科研场景。

二血管阻塞慢性脑缺血模型的制作

本文介绍模拟慢性脑血流低灌注所致病理生理改变及认知障碍的啮齿类动物模型,包括大鼠双侧颈总动脉结扎和小鼠双侧颈总动脉狭窄模型。该模型可造成脱髓鞘改变、轴突丢失、胶质细胞增生等白质损伤的病理改变。

新一代激光散斑血流成像为何更强大

传统的微循环研究方法主要有“管腔分布走行及超微形态学观察”、“通透性评估”、“血管运动及调节”、“细胞培养法”等, 这些检测方式多为“离体静态检测”和“离体动态检测”。但是,目前离体检测存在一些缺点:离体状态的生理环境和各项指标会与活体状态有较大差距。样本通常需要处死并解剖,无法完成良好的自身对照控制个体间的差异。操作较为繁琐,降低实验效率。

前往
在生命科学、滚球体育2.0版 和临床医疗领域提供可信赖的解决方案和服务,全力帮助客户取得成功